
Word Bank				
SSS	ASA	HL	Perpendicular Bisector Theorem	
SAS	AAS	CPCTC	Converse of Perpendicular	
Angle Bisector Theorem	Converse of Angle Bisector Theorem		Bisector Theorem	

1. Find KG in the figure below. Tell what theorem/postulate that you used.

line t is a perpendicular bisector by perpendicular bisector theorem

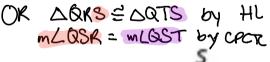
$$GJ = GK$$
 $KG = 3x - 17$
 $= 3 \cdot 14.5 - 17$
 $= 3 \cdot 14.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 - 17$
 $= 43.5 -$

what theorem/postulate you used.

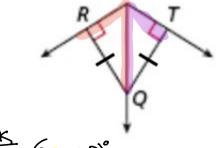
In the figure below, $m \angle QSR = (9a + 48)^{\circ}$ and $m \angle QST = (6a + 50)^{\circ}$. Find $m \angle QST$. Tell

R and T are equidistant from SQ by converse of angle bisector theorem,

$$LGSR \cong LQST$$
 $MLQSR = MLQST$
 $9a+48 = 6a+50$
 $-6a$
 $-6a$
 $-6a$
 $-6a$
 $-48 = 50$
 -48
 $3a = 2$
 3
 $a = 2$
 3


$$mLQST = (6a + 50)^{2}$$

$$= 6 \cdot \frac{2}{3} + 50$$


$$= \frac{28}{1} \cdot \frac{2}{3} + 50$$

$$= 4 + 50$$

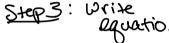
$$TmLQST = 54^{\circ}$$

BJ=26.5 √

Name:	Date:
-------	-------

For questions 3-5, write the equation for the perpendicular bisector of each segment.

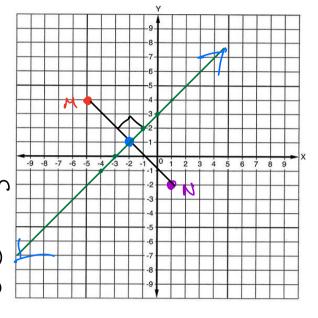
3. M(-5, 4) and N(1, -2)


Step 1: Find the midpoint

$$M(x,y) = \left(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2}\right)$$

$$= \left(\frac{1+(-5)}{2}, \frac{-2+y_1}{2}\right)$$

$$= \left(\frac{-4}{2}, \frac{2}{2}\right)$$


$$= \left(-3, 1\right)$$

Step 2: Find slope

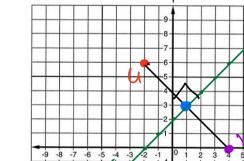
$$m = \frac{\sqrt{2} - \sqrt{1}}{\sqrt{2} - \sqrt{1}}$$
 $= \frac{\sqrt{2} - \sqrt{1}}{12 - \sqrt{2}}$
 $= \frac{\sqrt{2} - \sqrt{1}}{12 - \sqrt{2}}$

=
$$(-2, 1)$$

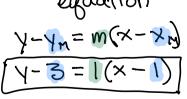
= $(-2, 1)$
= $(-2, 1)$
Step 3: Drize
equation
 $(-2, 1)$
 $(-2, 1)$
= $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$
 $(-2, 1)$

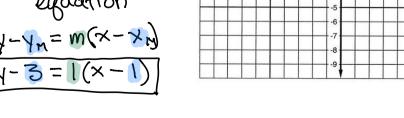
= -1 perpendicular =
$$1$$

flip $\frac{1}{2}$ Chang Sign
4. $\frac{U(-2, 6)}{4}$ and $\frac{U(4, 0)}{4}$


Step 1: Find midpoint

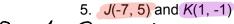
$$M(x,y) = \begin{pmatrix} x_2 + x_1 & y_2 + y_1 \\ 2 & 2 \end{pmatrix}$$


$$= \begin{pmatrix} 4 + (-2) & 0 + 6 \\ 2 & 2 \end{pmatrix}$$


$$= \begin{pmatrix} \frac{2}{2} & 6/2 \\ 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$

= -6



perpendicular Stope. Flip and change sign

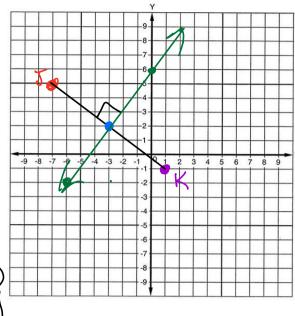
Name: Da	ate:
----------	------

$$M(x,y) = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$

$$= \left(\frac{1 + (-7)}{2}, \frac{-1 + 5}{2}\right)$$

$$= \left(\frac{-6}{2}, \frac{4}{2}\right)$$

$$M = \frac{\gamma_2 - \gamma_1}{x_2 - x_1}$$


$$\frac{1}{3}$$

Step 3: Write equation $M = \frac{1}{2} - \frac{1}{2}$ $M = \frac{1}{2} - \frac{1}{2$ For questions 6-8, two side lengths of a triangle are given. Find the possible lengths for a-b < third side < a+6 where a>6 the third side.

6. 4 yd, 19 yd

7. 3.07 m, 1.89 m

8. 9.2 cm, 3.8 cm

9. List the sides of the triangle below in order from shortest to longest.

three angles in a triangle always add up to 180° 4.5.10

MLD + MLE + MLF = 1804.5x-5 + 10x-2+5x-8=18019.5x - 15 = 180+18 +18 19.5x = 195 19.5x = 195 19.5

0.10-2 100

angles from smallest to largest $\angle D$, $\angle F$, $\angle E$

x = 10

Check 98+40+42=180? 180=180 \

side opposite each angle

10. Three sides of a triangle are n + 1, n + 2, and n + 3. Find the range of possible values for n. The sum of two sides of a triangle always greater than the third side

the difference of two sides is always less than the third Side.

$$n+3-(n+2) < n+1$$

 $n+3-n-2 < n+1$
 $1 < n+1$
 $-1 < n$

n>0