Chapter 1 Geometry

1-6 Midpoint and Distance in the Coordinate Plane

Objective:

Develop and apply the formula for midpoint
Use the Distance Formula and the Pythagorean theorem to find the distance between two points.

Essential Question:

How can we use distances and midpoints to help plan trips?

Definitions/Terminology

Coordinate Plane: A region that is divided into four regions by a horizontal line (x-axis) and a vertical line (y -axis). The locations, or coordinates, of a point are given by an ordered pair (x, y).

Definition in my own words:	Example:

Midpoint Formula

The midpoint M of $\overline{A B}$ with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is found by
$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Average of
y_{1} and y_{2}

Example 1: Find the coordinates of a midpoint
1A. Find the coordinates of the midpoint of $\overline{P Q}$ with endpoints $P(-8,3)$ and $Q(-2$, 7).

Check it out! Example 1

1a. Find the coordinates of the midpoint of $\overline{E F}$ with endpoints $E(-2,3)$ and $F(5$, $-3)$.

1Challenge

Find the coordinates of the midpoint of $\overline{N B}$ with endpoints $N(p-4, d+1)$ and $B(p+6,3 d-1)$.

Example 2: Finding the Coordinates of an Endpoint

2A. M is the midpoint of $\overline{X Y}$. X has coordinates $(2,7)$ and M has coordinates (6, 1). Find the coordinates of Y.

Check it out! Example 2

2a. S is the midpoint of $\overline{R T}$. R has coordinates $(-6,-1)$ and S has coordinates (-1 , 1). Find the coordinates of T.

2Challenge

S is the midpoint of $\overline{R T}$. R has coordinates $(3 n-8,2 r)$ and S has coordinates $(2 n$, 1). Find the coordinates of T.

Distance Formula
In a coordinate plane, the distance d between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Example 3: Using the Distance Formula

3A. Find FG and JK. Then, determine whether $\overline{F G} \cong \overline{J K}$.

Check it out! Example 3
3a. Find EF and GH. Then, determine whether
$\overline{E F} \cong \overline{G H}$.

Example 4: Finding Distance in the Coordinate Plane

4A. Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from $D(3,4)$ to $E(-2,-5)$.

Check it out! Example 4
4a. Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.
$R(3,2)$ and $S(-3,-1)$

4b. Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. $R(-4,5)$ and $S(2,-1)$

